Effect of lithium ions on cementoblasts in the presence of lipopolysaccharide in vitro
نویسندگان
چکیده
The applications of lithium ions as an agent to facilitate bone formation have been widely documented; however, the effect of lithium ions in the periodontitis model has not yet been elucidated. The aim of the present study, therefore, was to investigate the effect of single lithium ions in the presence of lipopolysaccharide (LPS). A periodontitis model was induced in cementoblasts using LPS. The cytotoxic effect of the lithium ions on the cementoblasts was studied through the MTT assay. Alkaline phosphatase analysis and alizarin red staining were performed to investigate the effect of the lithium ions on differentiation. To examine the effect of lithium ions on osteoclastogenesis, osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) mRNA and protein expression levels were assessed using reverse transcription-polymerase chain reaction analysis and ELISA, respectively. Compared with the effect induced by lithium ions on normal cementoblasts, proliferation and differentiation were downregulated following the co-incubation of the cementoblasts with LPS and lithium ions. Furthermore, the lithium ions appeared to alter osteoclastogenesis by regulating the OPG/RANKL ratio. In conclusion, the present findings suggest that lithium ions can downregulate proliferation and differentiation in a periodontitis model. Further studies should be undertaken prior to the acceptance of lithium ions for use in the clinic.
منابع مشابه
Changes in Biochemical Parameters Related to Lipid Metabolism Following Lithium Treatment in Rat
Lithium is widely used in medicine as an anti-depressive drug. In spite of abundant literature, questions on the side effects of lithium ions are far from being answered. In this study, the effects of lithium on biochemical parameters related to lipid metabolism were investigated. Male Wistar rats were treated with different doses of lithium for a period of up to 60 days. Blood samples were col...
متن کاملEffects of Lithium Chloride on In Vitro Proliferation Rate of Rat Marrow- Derived Mesenchymal Stem Cells
Purpose: To evaluate the effects of lithium chloride on MSCs in vitro expansion rate. Materials and Methods: In this experimental study, bone marrow from 8 rats was plated at 5×105- cells/cm2 in the presence of 1,2,5,7 and 10 mM Lithium chloride and expanded through 3 passages. Twelve days after initiatial culture, the cells of different groups were stained with crystal violet in order to compa...
متن کاملDevelopment of a Method for measuring Reactive Oxygen Radicals Levels In Vitro and Study the Effects of Vitamin C and E on Radical Production Reaction
Background: Free radicals and reactive oxygen species(ROS) are the most important factors in formation of oxidative stress reaction. Now, radical damage has been suggested to contribute to a wide variety of diseases such as Alzheimer, atherosclerosis and cancer. Transition metal ions in the presence of the various biomolecules produce these active compounds. The aim of this study is introducing...
متن کاملGlucose Influence on Copper Ion-Dependent Oxidation of Low Density Lipoprotein
Background: It is well established that oxidative modification of low density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. We examined the in vitro effect of glucose on native and glycated LDL oxidation using copper ion dependent oxidation system. Methods: In this study, LDL was isolated from plasma...
متن کاملEffect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture
Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...
متن کامل